Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(2): 101241, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38585687

RESUMO

While recombinant adenoviruses (rAds) are widely used in both laboratory and medical gene transfer, library-based applications using this vector platform are not readily available. Recently, we developed a new method, the CRISPR-Cas9 mediated in vivo terminal resolution aiding high-efficiency rescue of rAds from recombinant DNA. Here we report on a genetic workflow that allows construction of bacterial artificial chromosome-based rAd libraries reconstituted using highly efficient terminal resolution. We utilized frequent, pre-existing genomic sequences to allow the insertion of a selection marker, complementing two selected target sites into novel endonuclease recognition sites. In the second step, this selection marker is replaced with a transgene or mutation of interest via Gibson assembly. Our approach does not cause unwanted genomic off-target mutations while providing substantial flexibility for the site and nature of the genetic modification. This new genetic workflow, which we termed half site-directed fragment replacement (HFR) allows the introduction of more than 106 unique modifications into rAd encoding BACs using laboratory scale methodology. To demonstrate the power of HFR, we rescued barcoded viral vector libraries yielding a diversity of approximately 2.5 × 104 unique rAds per cm2 of transfected cell culture.

2.
J Med Virol ; 96(4): e29618, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639293

RESUMO

Human adenovirus (HAdV) is a significant viral pathogen causing severe acute respiratory infections (SARIs) in children. To improve the understanding of type distribution and viral genetic characterization of HAdV in severe cases, this study enrolled 3404 pediatric SARI cases from eight provinces of China spanning 2017-2021, resulting in the acquisition of 112 HAdV strains. HAdV-type identification, based on three target genes (penton base, hexon, and fiber), confirmed the diversity of HAdV types in SARI cases. Twelve types were identified, including species B (HAdV-3, 7, 55), species C (HAdV-1, 2, 6, 89, 108, P89H5F5, Px1/Ps3H1F1, Px1/Ps3H5F5), and E (HAdV-4). Among these, HAdV-3 exhibited the highest detection rate (44.6%), followed by HAdV-7 (19.6%), HAdV-1 (12.5%), and HAdV-108 (9.8%). All HAdV-3, 7, 55, 4 in this study belonged to dominant lineages circulating worldwide, and the sequences of the three genes demonstrated significant conservation and stability. Concerning HAdV-C, excluding the novel type Px1/Ps3H1F1 found in this study, the other seven types were detected both in China and abroad, with HAdV-1 and HAdV-108 considered the two main types of HAdV-C prevalent in China. Two recombinant strains, including P89H5F5 and Px1/Ps3H1F1, could cause SARI as a single pathogen, warranting close monitoring and investigation for potential public health implications. In conclusion, 5 years of SARI surveillance in China provided crucial insights into HAdV-associated respiratory infections among hospitalized pediatric patients.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Infecções Respiratórias , Criança , Humanos , Adenovírus Humanos/genética , Análise de Sequência de DNA/métodos , Filogenia , Adenoviridae/genética , China/epidemiologia , Infecções Respiratórias/epidemiologia
3.
Pediatr Transplant ; 28(3): e14750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38623880

RESUMO

BACKGROUND: Pediatric allogeneic hematopoietic cell transplant (allo-HCT) recipients are at risk for morbidity and mortality from human adenovirus (HAdV). HAdV can be detected in an asymptomatic state, referred to as infection or with signs or symptoms of illness, referred to as disease. Standardized case definitions are needed to distinguish infection from disease and allow for consistent reporting in both observational cohort studies and therapeutic clinical trials. METHODS: A working group of experts in virology, transplant infectious disease, and HCT was assembled to develop HAdV infection and disease definitions with the degree of certainty (i.e., possible, probable, and proven). Definitions were further refined through an iterative process and independently applied by two central review committees (CRCs) to 20 pediatric allo-HCT recipients with at least one HAdV-positive PCR. RESULTS: Initial HAdV infection and disease definitions were developed and updated through an iterative process after reviewing clinical and virological details for 81 subjects with at least one positive HAdV PCR detected in a clinical specimen. Independent application of final definitions to 20 HAdV positive allo-HCT recipients by two CRCs yielded similar number of HAdV infection or disease events but with variation of degree of certainty for some events. CONCLUSIONS: Application of definitions by a CRC for a study of HAdV infection and disease is feasible and can provide consistency in the assignment of outcomes. Definitions need further refinement to improve reproducibility and to provide guidance on determining clinical improvement or worsening after initial diagnosis of HAdV infection or disease.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Transplante de Células-Tronco Hematopoéticas , Criança , Humanos , Infecções por Adenovirus Humanos/diagnóstico , Reprodutibilidade dos Testes , Transplante Homólogo , Estudos de Coortes
4.
medRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38586006

RESUMO

Areas of dense population congregation are prone to experience respiratory virus outbreaks. We monitored wastewater and clinic patients for the presence of respiratory viruses on a large, public university campus. Campus sewer systems were monitored in 16 locations for the presence of viruses using next generation sequencing over 22 weeks in 2023. During this period, we detected a surge in human adenovirus (HAdV) levels in wastewater. Hence, we initiated clinical surveillance at an on-campus clinic from patients presenting with acute respiratory infection. From whole genome sequencing of 123 throat and/or nasal swabs collected, we identified an outbreak of HAdV, specifically of HAdV-E4 and HAdV-B7 genotypes overlapping in time. The temporal dynamics and proportions of HAdV genotypes found in wastewater were corroborated in clinical infections. We tracked specific single nucleotide polymorphisms (SNPs) found in clinical virus sequences and showed that they arose in wastewater signals concordant with the time of clinical presentation, linking community transmission of HAdV to the outbreak. This study demonstrates how wastewater-based epidemiology can be integrated with surveillance at ambulatory healthcare settings to monitor areas prone to respiratory virus outbreaks and provide public health guidance.

5.
J Med Virol ; 96(4): e29615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628102

RESUMO

Human adenovirus (HAdV) is one of the causative viruses of acute gastroenteritis (AGE) in children worldwide. Species F is known to be enteric adenovirus (genotypes 40 and 41) detected in stool samples. In Japan, we conducted an epidemiological study and molecular characterization of HAdV before and after the COVID-19 pandemic from 2017 to 2023. Among 821 patients, HAdV was detected in 118 AGE cases (14.4%). During a period of 6 years, the HAdV detection rates for each year were relatively low at 3.7% and 0%, in 2017-2018, and 2020-2021, respectively. However, the detection rate increased to remarkably high rates, ranging from 13.3% to 27.3% in the other 4-year periods. Of these HAdV-positive strains, 83.1% were F41 genotypes and 16.9% were other genotypes (A31, B3, C1, C2/C6, and C5). Phylogenetic analyses of the nucleotide and deduced amino acid sequences of the full-length hexon gene demonstrated that HAdV-F41 strains were comprised of three clades, and each clade was distributed across the study period from 2017 to 2023. Analysis of deduced amino acid sequences of the hexon gene of the representative HAdV-F41 strains from each clade revealed numerous amino acid substitutions across hypervariable regions (HVRs) from HVR-1 to HVR-7, two insertions in HVR-1 and HVR-7, and two deletions in HVR-1 and HVR-2 of the hexon gene compared to those of the prototype strain, particularly, those of clade 3 HAdV-F41 strains. The findings suggested that the HAdV-F41 of each clade was stable, conserved, and co-circulated for over two decades in Japan.


Assuntos
Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Adenovírus Humanos , Gastroenterite , Criança , Humanos , Adenoviridae/genética , Japão/epidemiologia , Filogenia , Pandemias , Análise de Sequência de DNA , Adenovírus Humanos/genética , Infecções por Adenoviridae/epidemiologia , Gastroenterite/epidemiologia , Infecções por Adenovirus Humanos/epidemiologia
6.
Front Immunol ; 15: 1294898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660301

RESUMO

Human adenovirus type 7 (HAdV-7) is a significant viral pathogen that causes respiratory infections in children. Currently, there are no specific antiviral drugs or vaccines for children targeting HAdV-7, and the mechanisms of its pathogenesis remain unclear. The NLRP3 inflammasome-driven inflammatory cascade plays a crucial role in the host's antiviral immunity. Our previous study demonstrated that HAdV-7 infection activates the NLRP3 inflammasome. Building upon this finding, our current study has identified the L4 100 kDa protein encoded by HAdV-7 as the primary viral component responsible for NLRP3 inflammasome activation. By utilizing techniques such as co-immunoprecipitation, we have confirmed that the 100 kDa protein interacts with the NLRP3 protein and facilitates the assembly of the NLRP3 inflammasome by binding specifically to the NACHT and LRR domains of NLRP3. These insights offer a deeper understanding of HAdV-7 pathogenesis and contribute to the development of novel antiviral therapies.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Humanos , Adenovírus Humanos/imunologia , Adenovírus Humanos/fisiologia , Inflamassomos/metabolismo , Inflamassomos/imunologia , Infecções por Adenovirus Humanos/imunologia , Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Ligação Proteica , Células HEK293 , Proteínas Virais/metabolismo , Proteínas Virais/imunologia
7.
Viruses ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543752

RESUMO

The human adenovirus (HAdV) is a common pathogen in children that can cause acute respiratory virus infection (ARVI). However, the molecular epidemiological and clinical information relating to HAdV among hospitalized children with ARVI is rarely reported in Russia. A 4-year longitudinal (2019-2022) study among hospitalized children (0-17 years old) with ARVI in Novosibirsk, Russia, was conducted to evaluate the epidemiological and molecular characteristics of HAdV. Statistically significant differences in the detection rates of epidemiological and virological data of all positive viral detections of HAdV were analyzed using a two-tailed Chi-square test. The incidence of HAdV and other respiratory viruses such as human influenza A and B viruses, respiratory syncytial virus, coronavirus, parainfluenza virus, metapneumovirus, rhinovirus, bocavirus, and SARS-CoV-2 was investigated among 3190 hospitalized children using real-time polymerase chain reaction. At least one of these respiratory viruses was detected in 74.4% of hospitalized cases, among which HAdV accounted for 4%. A total of 1.3% co-infections with HAdV were also registered. We obtained full-genome sequences of 12 HAdVs, which were isolated in cell cultures. Genetic analysis revealed the circulation of adenovirus of genotypes C1, C2, C5, C89, and 108 among hospitalized children in the period from 2019-2022.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Viroses , Criança , Humanos , Lactente , Recém-Nascido , Pré-Escolar , Adolescente , Adenovírus Humanos/genética , Criança Hospitalizada , Hospitalização , Infecções Respiratórias/epidemiologia , Federação Russa/epidemiologia , Variação Genética , Infecções por Adenovirus Humanos/epidemiologia
8.
Viruses ; 16(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543847

RESUMO

Wastewater-based epidemiology (WBE) is currently used to monitor not only the spread of the viral SARS-CoV-2 pandemic but also that of other viruses in endemic conditions, particularly in the absence of syndromic surveillance. The continuous monitoring of sewage requires high expenditure and significant time investments, highlighting the need for standardized methods and structured monitoring strategies. In this context, we conducted weekly wastewater monitoring in northwestern Tuscany (Italy) and targeted human adenovirus (HAdV), norovirus genogroup II (NoVggII), enterovirus (EV), and SARS-CoV-2. Samples were collected at the entrances of treatment plants and concentrated using PEG/NaCl precipitation, and viral nucleic acids were extracted and detected through real-time reverse transcription qPCR. NoVggII was the most identified target (84.4%), followed by HAdV, SARS-CoV-2, and EV. Only HAdV and EV exhibited seasonal peaks in spring and summer. Compared with data that were previously collected in the same study area (from February 2021 to September 2021), the results for SARS-CoV-2 revealed a shift from an epidemic to an endemic pattern, at least in the region under investigation, which was likely due to viral mutations that led to the spreading of new variants with increased resistance to summer environmental conditions. In conclusion, using standardized methods and an efficient monitoring strategy, WBE proves valuable for viral surveillance in pandemic and epidemic scenarios, enabling the identification of temporal-local distribution patterns that are useful for making informed public health decisions.


Assuntos
Adenovírus Humanos , Infecções por Enterovirus , Norovirus , Humanos , Vigilância Epidemiológica Baseada em Águas Residuárias , Antígenos Virais , Pandemias , SARS-CoV-2/genética , RNA Viral
9.
Arch Argent Pediatr ; : e202310148, 2024 Mar 14.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38457266

RESUMO

Introduction. Data on the frequency of enteric adenoviruses, sapoviruses, and astroviruses in cases of sporadic acute gastroenteritis in Argentina are scarce. Methods. Descriptive design of a selection of fecal samples of children with diarrhea younger than 5 years referred between 2010 and 2021, with a previous negative result for rotavirus and norovirus. The presence of enteric adenovirus, sapovirus, and astrovirus was tested by molecular methods, with subsequent genotyping of positive samples. Results. At least 1 of the tested viruses was detected in 226 (39.4%) of the 574 selected samples. Specifically, adenovirus, sapovirus, and astrovirus were detected in 30.7%, 5.6%, and 3.1% of the samples, respectively. The most frequent viruses detected were adenovirus 41, sapoviruses GI.1 and GI.2, and astrovirus 1. Non-classic astroviruses were detected in 2 samples. Conclusions. Despite being less frequent, these enteropathogens are responsible for a large number of sporadic diarrhea events. Therefore, their study and surveillance contribute significantly to reduce the gap of undiagnosed cases.


Introducción. Los datos de frecuencia de los adenovirus entéricos, sapovirus y astrovirus en casos de gastroenteritis aguda esporádica en Argentina son escasos. Métodos. Diseño descriptivo sobre una selección de muestras de heces de menores de 5 años con diarrea remitidas durante el período 2010-2021, con resultado previo negativo para rotavirus y norovirus. Se estudió la presencia de adenovirus entéricos, sapovirus y astrovirus por métodos moleculares, con posterior genotipificación de las muestras positivas. Resultados. De 574 muestras seleccionadas, en 226 (39,4 %) se identificó al menos uno de los virus estudiados. En particular, se detectaron adenovirus, sapovirus y astrovirus en el 30,7 %, el 5,6 % y el 3,1 %, respectivamente. El adenovirus 41, los sapovirus GI.1 y GI.2, y el astrovirus 1 fueron los más frecuentemente detectados. Se identificaron dos muestras con astrovirus no clásicos. Conclusiones. A pesar de ser menos frecuentes, estos enteropatógenos son responsables de un número considerable de episodios de diarrea esporádica. Por lo tanto, su estudio y vigilancia contribuye significativamente a reducir la brecha de casos no diagnosticados.

10.
Virology ; 594: 110051, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489915

RESUMO

This research focuses on analyzing the dynamics of neutralizing antibody (nAbs) titers against type 5 adenovirus (Ad5) in the adult population of Russia following vaccination against the novel coronavirus infection with recombinant adenovirus type-5 COVID-19 vaccine (CanSino Biologics, China). The impact of the Ad5 vector on nAb titers was investigated using 302 blood serum samples from individuals who received a single dose of the Ad5-nCoV vector vaccine. The research revealed that 33.8% of adults in Russia had pre-existing anti-Ad5 nAbs before the pandemic. Notably, 40% of vaccinated individuals did not exhibit an increase in nAbs titers upon receiving the Ad5-based vaccine. However, in the group with no or low titers of anti-Ad5 nAbs (1:10-1:40), a significant 8-16-fold increase in nAb titers to Ad5 was observed.


Assuntos
Infecções por Adenoviridae , Adenoviridae , Adulto , Humanos , Adenoviridae/genética , Vacinas contra COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinação
11.
J Virol ; 98(4): e0004324, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38497664

RESUMO

Human adenoviruses (HAdVs) are causative agents of morbidity and mortality throughout the world. These double-stranded DNA viruses are phylogenetically classified into seven different species (A-G). HAdV-G52, originally isolated in 2008 from a patient presenting with gastroenteritis, is the sole human-derived member of species G. Phylogenetic analysis previously suggested that HAdV-G52 may have a simian origin, indicating a potential zoonotic spillover into humans. However, evidence of HAdV-G52 in either human or simian populations has not been reported since. Here, we describe the isolation and in vitro characterization of rhesus (rh)AdV-69, a novel simian AdV with clear evidence of recombination with HAdV-G52, from the stool of a rhesus macaque. Specifically, the rhAdV-69 hexon capsid protein is 100% identical to that of HAdV-G52, whereas the remainder of the genome is most similar to rhAdV-55, sharing 95.36% nucleic acid identity. A second recombination event with an unknown adenovirus (AdV) is evident at the short fiber gene. From the same sample, we also isolated a second, highly related recombinant AdV (rhAdV-68) that harbors a distinct hexon gene but nearly identical backbone compared to rhAdV-69. In vitro, rhAdV-68 and rhAdV-69 demonstrate comparable growth kinetics and tropisms in human cell lines, nonhuman cell lines, and human enteroids. Furthermore, we show that coinfection of highly related AdVs is not unique to this sample since we also isolated coinfecting rhAdVs from two additional rhesus macaque stool samples. Our data collectively contribute to elucidating the origins of HAdV-G52 and provide insights into the frequency of coinfections and subsequent recombination in AdV evolution.IMPORTANCEUnderstanding the host origins of adenoviruses (AdVs) is critical for public health as transmission of viruses from animals to humans can lead to emergent viruses. Recombination between animal and human AdVs can also produce emergent viruses. HAdV-G52 is the only human-derived member of the HAdV G species. It has been suggested that HAdV-G52 has a simian origin. Here, we isolated from a rhesus macaque, a novel rhAdV, rhAdV-69, that encodes a hexon protein that is 100% identical to that of HAdV-G52. This observation suggests that HAdV-G52 may indeed have a simian origin. We also isolated a highly related rhAdV, differing only in the hexon gene, from the same rhesus macaque stool sample as rhAdV-69, illustrating the potential for co-infection of closely related AdVs and recombination at the hexon gene. Furthermore, our study highlights the critical role of whole-genome sequencing in understanding AdV evolution and monitoring the emergence of pathogenic AdVs.


Assuntos
Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Adenovírus Humanos , Adenovirus dos Símios , Animais , Humanos , Adenovirus dos Símios/genética , Macaca mulatta , Filogenia , Zoonoses , Adenoviridae/genética
12.
J Microbiol ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451451

RESUMO

Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A-G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.

13.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397017

RESUMO

Human adenovirus 36 (HAdV-D36) is presently the sole virus identified to be associated with an elevated risk of obesity in both humans and animals. However, its impact on embryonated chicken eggs (ECEs) remains unexplored. This study endeavoured to examine the influence of HAdV-D36 on embryonic development by utilizing embryonated chicken eggs as a dynamic model. To simulate various infection routes, the allantoic cavity and the yolk sac of ECEs were inoculated with HAdV-D36. Subsequently, embryos from both the experimental (inoculated with virus) and control (inoculated with PBS) groups were weighed and subjected to daily histological examination. The daily embryo weights were assessed and compared between groups using the Shapiro-Wilk test. Histopathological changes in tissues were examined and compared between the tested and control groups to ascertain physiological alterations induced by the virus. Our study confirmed a significant increase in the body weight of ECEs. However, this phenomenon was not attributable to adipose tissue development; rather, it was characterized by an augmented number of cells in all observed tissues compared to control subjects. We posit that HAdV-D36 may impact developing organisms through mechanisms other than enhanced adipose tissue development. Specifically, our findings indicate an increased number of cells in all tissues, a phenomenon that occurs through an as-yet-unexplored pathway.


Assuntos
Adenovírus Humanos , Galinhas , Animais , Humanos , Peso Corporal , Obesidade
15.
Pathogens ; 13(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38392896

RESUMO

Human adenovirus (HAdV) is a common pathogen, which can lead to various clinical symptoms and-in some cases-central nervous system (CNS) dysfunctions, such as encephalitis and meningitis. Although the initial events of virus entry have already been identified in various cell types, the mechanism of neuronal uptake of adenoviruses is relatively little understood. The aim of this study was to investigate early events during adenoviral infection, in particular to determine the connection between cellular coxsackievirus and adenovirus receptor (CAR), clathrin, caveolin, and early endosomal proteins (EEA1 and Rab5) with the entry of HAdVs into primary murine neurons in vitro. An immunofluorescence assay and confocal microscopy analysis were carried out to determine HAdV4, 5, and 7 correlation with CAR, clathrin, caveolin, and early endosomal proteins in neurons. The quantification of Pearson's coefficient between CAR and HAdVs indicated that the HAdV4 and HAdV5 types correlated with CAR and that the correlation was more substantial for HAdV5. Inhibition of clathrin-mediated endocytosis using chlorpromazine limited the infection with HAdV, whereas inhibition of caveolin-mediated endocytosis did not affect virus entry. Thus, the entry of tested HAdV types into neurons was most likely associated with clathrin but not caveolin. It was also demonstrated that HAdVs correlate with the Rab proteins (EEA1, Rab5) present in early vesicles, and the observed differences in the manner of correlation depended on the serotype of the virus. With our research, we strove to expand knowledge regarding the mechanism of HAdV entry into neurons, which may be beneficial for developing potential therapeutics in the future.

16.
Curr Med Sci ; 44(1): 121-133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38393525

RESUMO

OBJECTIVE: Human adenovirus (HAdV) infection is common and can develop to serious conditions with high mortality, yet the mechanism of HAdV infection remains unclear. In the present study, the serum metabolite profiles of HAdV-7-infected patients with pneumonia or upper respiratory tract infection (URTI) were explored. METHODS: In total, 35 patients were enrolled in the study following an outbreak of HAdV-7 in the army, of whom 14 had pneumonia and 21 had URTI. Blood samples were collected at the acute stage and at the recovery stage and were analyzed by untargeted metabolomics. RESULTS: Over 90% of the differential metabolites identified between the pneumonia patients and URTI patients were lipids and lipid-like molecules, including glycerophospholipids, fatty acyls, and sphingolipids. The metabolic pathways that were significantly enriched were primarily the lipid metabolism pathways, including sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism. The sphingolipid metabolism was identified as a significantly differential pathway between the pneumonia patients and URTI patients and between the acute and recovery stages for the pneumonia patients, but not between the acute and recovery stages for the URTI patients. Ceramide and lactosylceramide, involved in sphingolipid metabolism, were significantly higher in the pneumonia patients than in the URTI patients with good discrimination abilities [area under curve (AUC) 0.742 and 0.716, respectively; combination AUC 0.801]. CONCLUSION: Our results suggested that HAdV modulated lipid metabolism for both the patients with URTI and pneumonia, especially the sphingolipid metabolism involving ceramide and lactosylceramide, which might thus be a potential intervention target in the treatment of HAdV infection.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Antígenos CD , Pneumonia , Infecções Respiratórias , Humanos , Adenovírus Humanos/genética , Lactosilceramidas , Infecções Respiratórias/epidemiologia , Pneumonia/complicações , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/metabolismo
17.
Microbiol Spectr ; 12(4): e0181623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385650

RESUMO

Human adenovirus (HAdV) infects the respiratory system, thus posing a threat to health. However, immunodiagnostic reagents for human adenovirus are limited. This study aimed to develop efficient diagnostic reagents based on monoclonal antibodies for diagnosing various human adenovirus infections. Evolutionary and homology analyses of various human adenoviral antigen genes revealed highly conserved antigenic fragments. The prokaryotic expression system was applied to recombinant penton, hexon, and IVa2 conserved fragments of adenovirus, which were injected into BALB/c mice to prepare human adenovirus-specific monoclonal antibodies. Enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and Western blotting were used to determine the immune specificity of the monoclonal antibodies. Indirect ELISA showed that monoclonal antibodies 1F10, 8D3, 4A1, and 9B2 were specifically bound to HAdV-3 and HAdV-55 and revealed high sensitivity and low detection limits for various human adenoviruses. Western blotting showed that 1F10 and 8D3 specifically recognized various human adenovirus types, including HAdV-1, HAdV-2, HAdV-3, HAdV-4, HAdV-5, HAdV-7, HAdV-21, and HAdV-55, and 4A1 specifically recognized HAdV-1, HAdV-2, HAdV-3, HAdV-5, HAdV-7, HAdV-21, and HAdV-55. IFAs showed that 1F10, 8D3, and 4A1 exhibited highly selective localization to A549 cells infected with HAdV-3 and HAdV-55. Finally, two antibody pairs that could detect hexon antigens HAdV-3 and HAdV-55 at low concentrations were developed. The monoclonal antibodies developed in this study show potential for detecting human adenoviruses. IMPORTANCE: In this study, we selected the three most conserved antigenic fragments of human adenovirus to prepare a murine monoclonal antibody for the first time, and human adenovirus antigenic fragments with heretofore unheard of degrees of conservatism were isolated. The three monoclonal antibodies with the ability to recognize human respiratory adenovirus over a broad spectrum were screened by hybridoma and monoclonal antibody preparation. Human adenovirus infections are serious; however, therapeutic drugs and diagnostic reagents are scarce. Thus, to reduce the serious consequences of human viral infections and adenovirus pneumonitis, early diagnosis of infection is required. The present study provides three monoclonal antibodies capable of recognizing a wide range of human adenoviruses, thereby offering guidance for subsequent research and development.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Humanos , Animais , Camundongos , Anticorpos Monoclonais , Anticorpos Antivirais , Adenovírus Humanos/genética , Sorogrupo , Proteínas do Capsídeo/genética
18.
Front Pediatr ; 12: 1295133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379910

RESUMO

Background: Human adenovirus (HAdV) infections in children can lead to profound pulmonary injury and are frequently associated with severe complications, particularly in cases concomitant with plastic bronchitis. Managing this condition presents significant challenges and carries an exceptionally high fatality rate. Regrettably, there are currently no specific antiviral agents that have demonstrated efficacy in treating severe adenovirus pneumonia in children. Case presentation: We report a 10-month-old infant suffering from severe adenovirus pneumonia combined with plastic bronchitis (PB). He received intravenous ribavirin combined with recombinant human interferon α1b (INFα1b) aerosol inhalation and his condition eventually improved. No side effects occurred during the treatment, and the long-term prognosis was favorable. Conclusion: In this case, the combination therapy of intravenous ribavirin and INFα1b seems to have contributed to the resolution of illness and may be considered for similar cases until stronger evidence is generated.

19.
J Virol ; 98(2): e0188523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38197632

RESUMO

Adenoviruses are a group of double-stranded DNA viruses that can mainly cause respiratory, gastrointestinal, and eye infections in humans. In addition, adenoviruses are employed as vector vaccines for combatting viral infections, including SARS-CoV-2, and serve as excellent gene therapy vectors. These viruses have the ability to modulate the host cell machinery to their advantage and trigger significant restructuring of the nuclei of infected cells through the activity of viral proteins. One of those, the adenovirus DNA-binding protein (DBP), is a multifunctional non-structural protein that is integral to the reorganization processes. DBP is encoded in the E2A transcriptional unit and is highly abundant in infected cells. Its activity is unequivocally linked to the formation, structure, and integrity of virus-induced replication compartments, molecular hubs for the regulation of viral processes, and control of the infected cell. DBP also plays key roles in viral DNA replication, transcription, viral gene expression, and even host range specificity. Notably, post-translational modifications of DBP, such as SUMOylation and extensive phosphorylation, regulate its biological functions. DBP was first investigated in the 1970s, pioneering research on viral DNA-binding proteins. In this literature review, we provide an overview of DBP and specifically summarize key findings related to its complex structure, diverse functions, and significant role in the context of viral replication. Finally, we address novel insights and perspectives for future research.


Assuntos
Adenoviridae , Replicação do DNA , Proteínas de Ligação a DNA , Proteínas Virais , Humanos , Adenoviridae/fisiologia , Adenovírus Humanos/fisiologia , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
20.
Virus Genes ; 60(1): 18-24, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38175387

RESUMO

Human adenovirus subgroup B (HAdV B) is one of the major pathogens of human respiratory virus infections, which has considerable transmission and morbidity in a variety of populations. Therefore, rapid and specific detection of HAdV B in clinical samples is essential for diagnosis. This study aimed to develop a product for rapid nucleic acid detection of HAdV B using recombinase polymerase amplification assay (RPA) and validate the performance of this method by using clinical samples. Results showed that this method achieved a lower limit of detection (LOD) of 10 copies/µL and had no cross-reactivity with other adenovirus subgroups or respiratory pathogens. In addition to high sensitivity, it can be completed within 30 min at 40 °C. There is no need to perform nucleic acid extraction on clinical samples. Taking qPCR as the gold standard, the RPA assay possessed a high concordance (Cohen's kappa, 0.896; 95% CI 0.808-0.984; P < 0.001), with a sensitivity of 87.80% and a specificity of 100.00%. The RPA assay developed in this study provided a simple and highly specific method, making it an important tool for rapid adenovirus nucleic acid detection and facilitating large-scale population screening in resource-limited settings.


Assuntos
Adenovírus Humanos , Ácidos Nucleicos , Humanos , Recombinases/genética , Adenovírus Humanos/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...